216 research outputs found

    Exploring the potential of conventional and flash pyrolysis methods for the valorisation of grape seed and chestnut shell biomass from agri-food industry waste

    Get PDF
    Producción CientíficaResidual biomass is a valuable and growing by-product, but often underutilized. This research aims to investigate the possible strategies for the energetic valorisation of agri-food industry wastes: grape seed and chestnut shell. Pyrolysis thermal process was the selected for this work. Applied to biomass, pyrolysis is a promising method for the simultaneous production of biochar, bio-oil, and gas. Two different pyrolysis processes were conducted: conventional pyrolysis at 750 °C and flash pyrolysis at 750 °C and 850 °C. Flash pyrolysis yielded superior product properties compared to conventional pyrolysis. The gas obtained through flash pyrolysis presented a four-fold higher high heating value due to increased CH4 and H2 content. Bio-oil contains over 90% of polycyclic aromatic hydrocarbons, and calorific value reached up to 32 MJ kg−1 for grape seed, which is 7% more than bioethanol HHV. Biochar can be used both as fuel or as activated carbon precursor due to its high carbon content (91%). Calorific value of chestnut shell biochar (32.7 MJ kg−1), comparable to mineral coals, increased by 72% with respect to the value of this untreated raw material. This work approved the potential of flash pyrolysis as a method to process biomass wastes in a renewable energy scenario.FICYT - Fundación Fomento Asturias Investigación - FEDER (AYUD/2021/51379)Agencia Española de Investigación (PDC2022-133394-I00 y PID2021-124347OB-I00

    Evaluación de la generación de energía renovable en zonas urbanas de Países Mediterráneos

    Get PDF
    Introducción: Se espera que la población mundial supere los 11.000 millones de personas a finales de siglo, la mayoría de las cuales vivirán en zonas urbanas. Este hecho supone que nuestro planeta se enfrenta a un gran reto en lo que respecta al suministro de energía sostenible. Las energías renovables han mostrado un enorme potencial para aumentar la sostenibilidad, sin embargo su uso dentro de las ciudades sigue siendo escaso. Esta perspectiva pone de manifiesto la importancia de la contribución urbana a las energías renovables, que será fundamental para el bienestar de una población urbana en continuo crecimiento. Entre las tecnologías emergentes de energías renovables en entornos urbanos destaca el uso de la biomasa vegetal para calefacción. La biomasa de origen vegetal se considera una fuente de carbono neutral, ya que la cantidad de CO2 que absorbe la planta durante su crecimiento a través del proceso de fotosíntesis, es la misma que libera durante su combustión, siendo por tanto el balance de carbono neutro. Los Países Mediterráneos en general presentan una alta dependencia de los combustibles fósiles, a la vez que una amplia disponibilidad de biomasa procedente tanto del sector forestal como de residuos agroindustriales. La transición a un sistema energético bajo en carbono implica la investigación de nuevas formas de energía renovable que permanecieron inutilizadas durante la era de los combustibles fósiles. Las ciudades son las principales productoras de residuos, y de acuerdo con la infraestructura disponible y el marco regulatorio establecido, estos residuos pueden ser clasificados, descontaminados y reutilizados, para ser quemados para la producción de energía térmica y eléctrica, o llevados a vertedero. En la actualidad, la mayoría de los residuos forestales, agroindustriales y ganaderos se descartan sin hacer un uso medioambientalmente sostenible de los mismos. Además, la integración de los recursos renovables de la biomasa en las políticas energéticas de las ciudades contribuirá, por una parte, a una mejor gestión de los residuos y, por otra, a aumentar la cuota de las energías renovables y la eficiencia energética. Los sistemas energéticos de distrito como los sistemas de calefacción urbana, son una tecnología creciente en muchas ciudades que permite alcanzar estos objetivos. La integración a gran escala de los sistemas energéticos de distrito en las ciudades se traduce en múltiples beneficios, ya que además de proporcionar a las zonas urbanas la energía térmica y eléctrica que necesitan, permite un mayor uso de las fuentes renovables del entorno circundante y, por tanto, una menor dependencia de los combustibles fósiles. También promueve la economía local, haciendo que el consumo de energía sea más asequible y mejorando la calidad del aire urbano mediante la reducción de las emisiones de gases de efecto invernadero. Por tanto la motivación de esta Tesis es presentar líneas de investigación para poner de manifiesto el potencial de nuevas fuentes de energía procedentes de la biomasa, y para lograr su integración a nivel de distrito, lo que permitirá por un lado una mejor gestión de estos recursos y, por otro, un aumento tanto de la participación de las renovables en el mix energético como de la eficiencia energética de los sistemas de energía. 2. Contenido de la investigación: La Tesis se estructura en siete capítulos, cinco de los cuales son publicaciones en revistas indexadas en el Journal Citation Report. En el primer artículo se realiza una aproximación bibliométrica que permite situar la investigación dentro del contexto científico actual. En el segundo artículo se pone de manifiesto a través de un caso práctico, la integración de los recursos energéticos renovables procedentes de la biomasa en el sistema energético de distrito de las ciudades. En concreto se realiza el diseño y evaluación de un sistema de calefacción urbana alimentado mediante residuos forestales, para un pequeño asentamiento de 3.000 habitantes, analizando los beneficios económicos y ambientales obtenidos. En los artículos tercero y cuarto se determina mediante distintas técnicas de laboratorio, el poder calorífico y la composición química de dos residuos agroindustriales como el hueso del mango y la cáscara de cacahuete. Una vez determinado su poder calorífico, y teniendo en cuenta la producción de los principales países productores, se evalúa tanto la capacidad global de generación de energía, como la reducción obtenida en las emisiones de CO2, considerando la producción total de los distintos países productores. Por último en el artículo quinto se realiza una comparativa entre una antigua instalación térmica a base de fuel oil, y una nueva de biomasa alimentada mediante cáscara de pipa de girasol, que sirve para satisfacer las necesidades de calefacción y agua caliente sanitaria de un hotel. En concreto se realiza un análisis energético, medioambiental, económico y operativo de la nueva instalación térmica de biomasa. 3. Conclusión: El aumento de la población urbana, junto con el alto precio de los combustibles fósiles, hace de las energías renovables un elemento clave en la transición energética hacia una economía baja en carbono. Las energías limpias reducirán la dependencia de los combustibles fósiles, reduciendo también las emisiones de gases de efecto invernadero y mejorando así la contaminación ambiental en las zonas urbanas. La integración de los recursos energéticos renovables a nivel de distrito permite por un lado una mejor gestión de estos recursos y, por otro, un aumento tanto de la cuota de las energías renovables en el mix energético, como de la eficiencia energética de los sistemas energéticos. Por otro lado, promueve el desarrollo económico de la localidad y la calidad del aire se verá mejorada gracias a la reducción de las emisiones de CO2 y otros gases de efecto invernadero. Estos sistemas pueden integrarse a gran escala para aplicaciones de calefacción y refrigeración urbanas. La calefacción y la refrigeración representan el 70% del consumo de energía de los edificios, y representan una parte significativa del consumo energético final mundial. Actualmente, la mayor parte de esta energía proviene de combustibles fósiles (gas, diesel, carbón, etc.), causando importantes emisiones de gases de efecto invernadero. En los sistemas de calefacción urbana centralizados mediante biomasa, así como en las calderas de biomasa descentralizadas a nivel residencial, los recursos energéticos que de otro modo se desperdiciarían pueden utilizarse para satisfacer las demandas relacionadas con la calefacción, el agua caliente sanitaria y otras aplicaciones. Además determinados residuos agroindustriales, que normalmente se desechan, poseen un elevado poder calorífico superior similar al de otros biocombustibles sólidos estandarizados, lo que los hace óptimos para la generación de energía térmica a nivel residencial. Los países mediterráneos en general y todos los europeos en particular tienen una alta dependencia externa de la energía utilizada. Los sistemas de calefacción urbana mediante biomasa, pueden significar una oportunidad para que los asentamientos rurales y urbanos se ajusten a las directivas europeas. Mientras los recursos de biomasa estén disponibles y próximos a los lugares de suministro, los costes de asentamiento, eliminación y transporte de la biomasa continuarán bajos, lo que garantizará la sostenibilidad energética, y contribuirá a la reducción de las emisiones de gases de efecto invernadero. Hoy en día, el uso de la energía verde en zonas urbanas representa un campo de gran interés para la comunidad científica. La generación urbana a gran escala de energía renovable se postula como una solución para el desarrollo de la energía sostenible, tanto para satisfacer la creciente demanda de energía en las ciudades, como para reducir las emisiones de gases de efecto invernadero. Esta tesis propone novedosas metodologías para la integración de los recursos energéticos renovables en las zonas urbanas, a la vez que destaca el potencial energético de nuevas fuentes renovables procedentes de la biomasa

    An Assessment of Potential Resources for Biomass Energy in Nigeria

    Get PDF
    Nigeria is a developing country with an insufficient supply of energy to meet the continuously growing demand. However, there are several biomass resources available within the country. This paper presents a desk review, which investigates the potential resources for biomass energy generation within the country. Energy policies to aid biomass use as an energy source within the country were also reviewed. Biomass resources identified within Nigeria include forest residues, agricultural residues, human and animal wastes, aquatic biomass, and energy crops. However, several of the resources, particularly agricultural residues, have competing uses, such as livestock feed and soil rejuvenation. An estimation of the technical energy potential of the biomass resources revealed that about 2.33 EJ could be generated from the available resources in Nigeria. Agricultural residues have an energy potential of about 1.09 EJ, with cassava, maize, oil palm, plantain, rice, and sorghum being the major contributors. Animal wastes, municipal solid waste, and forest residues have energy potentials of 0.65, 0.11, and 0.05 EJ, respectively. The potentials of wood fuel and charcoal are 0.38 and 0.05 EJ, respectively. The study found that despite the available potential and existing policies, not much has been done in the implementation of large-scale bioenergy within the country. However, there has been laboratory and research-scale investigations. The review suggests that more policies and stronger enforcement will aid bioenergy development within the country. From the review, it has been suggested that the agricultural sector needs to be developed to generate more biomass resources. More research, development, and implementation have to be carried out on biomass resources and bioenergy generation processes. The production of non-edible energy crops in marginal lands should also be considered prime to the development of bioenergy within the country

    Postharvest Technology

    Get PDF
    Postharvest management of food crops is an important part of food safety and security across the supply chain. It includes processing of agricultural produce, storage, packaging and coating, postharvest disease management, extending shelf life, and maintaining food quality and safety. Postharvest Technology - Recent Advances, New Perspectives and Applications discusses some important aspects of postharvest technologies. Chapters address such topics as postharvest preservation technology, postharvest disease management, and postharvest processing and packaging

    Biomass as Renewable Energy: Worldwide Research Trends

    Get PDF
    The world’s population continues to grow at a high rate, such that today’s population is twice that of 1960, and is projected to increase further to 9 billion by 2050. This situation has brought about a situation in which the percentage of the global energy used in cities is increasing considerably. Biomass is a resource that is present in a variety of different materials: wood, sawdust, straw, seed waste, manure, paper waste, household waste, wastewater, etc. Biomass resources have traditionally been used, and their use is becoming increasingly important due to their economic potential, as there are significant annual volumes of agricultural production, whose by-products can be used as a source of energy and are even being promoted as so-called energy crops, specifically for this purpose. The main objective of this work was to analyze the state of research and trends in biomass for renewable energy from 1978 to 2018 to help the research community understand the current situation and future trends, as well as the situation of countries in the international context, all of which provides basic information to facilitate decision-making by those responsible for scientific policy. The main countries that are investigating the subject of biomass as a renewable energy, as measured by scientific production, are the United States, followed by China, India, Germany and Italy. The most productive institutions in this field are the Chinese Academy of Sciences, followed by the National Renewable Energy Laboratory, Danmarks Tekniske Universitet and the Ministry of Education in China. This study also identifies communities based on the keywords of the publications obtained from a bibliographic search. Six communities or clusters were found. The two most important are focused on obtaining liquid fuels from biomass. Finally, based on the collaboration between countries and biomass research, eight clusters were observed. All this is centered on three countries belonging to different clusters: USA, India and the UK

    Briquetting and torrefaction of agricultural residues for energy production

    Get PDF
    Ph. D. ThesisAgricultural residues are a potential feedstock for renewable energy because they are abundant and CO2 neutral. Due to their low energy density and heterogeneity, there are key challenges in handling, storage, transportation and utilization, therefore pre-treatment is required. The aim of this study was to evaluate a range of pre-treatment options of agricultural residues for energy applications. The effect of moisture content (7.14-16.94%), particle size (˂2.36-˂4.00mm), compression temperature (20-80oC), pressure (100-250MPa), and type of agricultural residues (corn cob and bean straw) on briquette properties i.e. density, impact resistant and compressive strength was studied. Torrefaction of corn cob and bean straw were also investigated over a range of temperatures (200-300oC) and holding times (0-90 min) to study the impact of operating conditions on yields and properties of torrefaction products (char, liquid and gas). The results showed that density, impact resistance, and compressive strength significantly increased with increasing compacting temperature (20-80oC) and compacting pressure (100-250MPa) but decreased with increasing moisture content and particle size. Briquettes that satisfied the German Standard DIN 51731(density >1000kg m-3) and European Standard Committee CEN/TC 335 (durability >95%) standards for solid fuels were obtained with particle size ˂4 mm, compression temperature of 80oC and (i) moisture content of 10-12% with pressure of 100-250MPa for bean straw and (ii) low moisture content (<10 %) and high pressure (200-250 MPa) for maize cob. Briquettes derived from a bean straw:maize cob blend had high density and strength at low pressure and temperature compared to those derived from maize cobs due to enhanced bonding via mechanical interlocking, thereby reducing the costs of production. Torrefied solid products obtained at 300oC had properties comparable to coal with energy yields of 74.84-79.47% for maize cob and 90.08-92.93% for bean straw. The gaseous product (3.25-17.41% yield) was predominantly CO2 due to decomposition of hemicellulose within the temperature range studied. Briquettes that met the above certified standards were studied for pyrolysis and combustion in a fixed-bed reactor. The effects of pyrolysis temperature (410-650oC), heating rate (10-20oC min-1), carrier gas flow rate (40-60 cm3 min-1) and briquetting conditions (temperature (20-80oC), pressure (150-200MPa) and blend ratio) on the yields and properties of pyrolysis products from maize cob iv and bean straw briquettes were investigated. It was found that bio-oil and gas yields increased while, char yields from both biomass feedstocks decreased with increasing pyrolysis temperature due to an increase in decomposition of lignocellulosic components and secondary decomposition of primary char. Briquetting conditions, heating rate and carrier gas flow rate had negligible effect on product yields and properties. Increasing maize cob content in briquettes resulted in an increase in the yield of bio-oil from 48 to 51% at the expense of char yield, due to the low ash and fixed carbon content of the maize cob. Combustion and pyrolysis of raw/untreated and torrefied maize cob and bean straw in a thermogravimetric analyzer occurred through moisture release, devolatilization and char degradation. The kinetic study of raw maize cob and bean straw combustion/pyrolysis revealed that the average activation energies of maize cob and bean straw were 202.26 kJ mol-1 and 165.64 kJ mol-1 for combustion and 214.15 kJ mol-1 and 252.09 kJ mol-1 for pyrolysis. Modelled data of pyrolysis and combustion of bean straw and maize cob using the obtained kinetic parameters agreed well with the experimental data, which will be useful in reactor design for energy generation via pyrolysis and combustion from agricultural residues. The findings of this study could help in promoting the use of agricultural residues for energy generation which will potentially lessen the impacts of global warming, diversify and decentralize the energy supply through the improved management/utilisation of agricultural wastes. Briquette production, torrefaction and pyrolysis could provide opportunities for the local population to increase employment and income in rural areas. This study will also provide a reference for future research on densification and utilisation of agricultural residues for energy generation.Commonwealth Scholarship Commissio

    Synthesis of electrolytic manganese dioxide (EMD) and biomass waste-derived carbon for hybrid capacitors

    Get PDF
    Renewable energy (RE) is expected to be the primary energy supplier in the future energy mix. This has created the necessity for low-cost, safe, and reliable energy storage to guarantee a continuous energy supply by the intermittent RE sources. Due to the inbuilt rich chemistry of manganese dioxide (MnO2) and the advantageous characteristics; of low cost, environmentally friendliness, and nontoxic, it can be adapted for a wide range of applications such as biosensors, humidity sensors, catalysts, and so on. Among the different forms of MnO2, electrolytic manganese dioxide (EMD) is well-demanded energy storage material. However, the limitations such as lower capacitance, irreversibility, and cyclability of EMD in comparison with other metal oxides such as cobalt and nickel oxides, have hindered its application in capacitor energy storage, which was one of the focuses of this thesis. Therefore, this Ph.D. research project aimed at synthesizing modified EMD materials as the positive electrode for hybrid capacitor applications. The modified EMD was coupled with the biomass-derived activated carbon (AC) which is synthesized as the negative electrode to fabricate hybrid capacitors. This Ph.D. research work has contributed to the existing knowledge through the following: 1) synthesizing pristine EMD using galvanostatic electrodeposition and studying its suitability for capacitor applications via experimental and theoretical analysis, 2) biopolymer alginate assisted EMD synthesis and optimization via experimental and computational modeling, 3) studying the effect of varying surfactants to improve the electrochemical characteristics of EMD, 4) synthesis of biomass waste-derived activated carbon and modeling their parameters for capacitance prediction. The results indicated the challenge and importance of the delicate tailoring of the EMD characteristics for capacitor application. Pristine EMD was synthesized under different electrodeposition experiment conditions by varying applied current density (100, 200, 300 A m-2) and deposition duration (4, 5, 6 h). The electrodeposition was carried out in a low acidic medium electrolytic bath where a lead (Pb) anode and stainless steel (SS) cathode were used. The EMD was deposited on the Pb anode via Mn2+ oxidation to form Mn4+ and its oxide MnO2. The physicochemical and electrochemical characterization of the obtained EMD powder concluded that the material deposited at 200 A m-2 for 5 hours, showing the spindle-like morphology was suitable over others for supercapacitor (SC) application. The pristine EMD at these experimental conditions delivered 98 F g-1 capacitance at 1 mA cm-2 applied current density tested in 2 M NaOH aqueous electrolyte and proved its potential development by modifying its characteristics. Therefore, the pristine EMD was modified by introducing the biopolymer alginic acid crosslinking to improve its electrochemical performance. The alginic acid was added to the electrolytic bath at varying concentrations; 0, 0.1, 0.25, 0.5, and 1 g l-1, to optimize the added bio-polymer amount to maximize the capacitance. At 0.5 g l-1, the pristine EMD morphology was rearranged to a cactus-shaped with flutes. The calculated specific capacitance of the modified EMD was ~5 times higher (487 F g-1) than the pristine EMD. The molecular dynamics simulation results determined the polymer-ion interactions in the electrolytic bath and provided evidence, showing that the alginic acid could act as a template for binding the Mn2+ ions in a relatively ordered manner for the growth of the EMD deposit. 0.42 of pyrolusite and 0.58 of ramsdellite fractions present in the modified material were quantitatively determined using the neutron powder diffraction (NPD) data. The slight increments of the lattice spacing observed in high-resolution transmission electron microscopy (HRTEM) images were well aligned with the NPD results of unit cell volume expansions of the EMD-polymer composite showing the polymer intercalation within the EMD structure influencing its characteristics. At 2 mA cm-2, the fabricated hybrid capacitor delivered 52 F g-1 specific capacitance, 14 Wh g-1 specific energy, 500 W g-1 specific power, and 94 % capacitance retention over 5000 cycles. The results highlighted the importance of the functional molecular structure of the biopolymer alginic acid to produce a binary composite of EMD-polymer as a capacitor material. Further, the pristine EMD was modified by electrodepositing the MnO2 using surfactant mediated electrolyte solutions. The electrochemical performance of the synthesized EMD in the presence of three novel cationic surfactants was compared with the pristine EMD and the EMD co-deposited with commonly used cetyltrimethylammonium ammonium bromide (C-AB) surfactant. The three surfactants with different molecular structures are Tetradecyltrimethylammonium bromide (T-AB), Didodecyldimethylammonium bromide (D-AB), Benzyldodecyldimethylammonium bromide (B-AB) used at varying concentrations (15, 30, 60 g l-1) in the electrolytic bath. Among the B-AB surfactant at 30 mg l-1, the EMD (EMD/B-AB30) showed the highest capacitance of 602 F g-1 tested at 1 mA cm-2 current density. The molecular dynamics simulation indicated that when the B-AB surfactant was attached to the Pb electrode via electrostatic, Van der Walls interactions, then the nucleation of MnO2 particles occurred surrounding the surfactant molecule. The unique molecular structure influenced the nucleation formation well-ordered, whereas, for pristine EMD, the nucleation was random. The hybrid capacitor comprises the best performed modified EMD (EMD/B-AB30), and biomass waste-derived AC exhibited 91 F g-1 specific capacitance, an outstanding energy density of 32.4 Wh kg-1 for a corresponding power density of 971 W kg-1. Valorization of the biomass waste, Mango seed husk (MS), and the Grape marc (GM) was carried out by converting the waste into AC for capacitor electrodes. The MS was carbonized, followed by chemical activation using KOH as the activating agent. Activation temperature was varied at 800, 900, 1000, and 1100 °C temperatures, among at 1100 °C highest surface area of 1943 m2 g-1, and the specific capacitance of 135 F g-1 was obtained for the MS-AC. The MS-AC experimental data were incorporated in four machine learning (ML) algorithms; linear regression (LR), decision tree (DT), support vector regression (SVR), and multi-layer perceptron (MLP) for capacitance prediction. Among, the MLP model showed the best correlation (R2 = 0.9868) between the experimental and predicted capacitance values and proved its potential application for computing the complex non-linear relationships between the input and output datasets. Further, the porous carbon materials were derived from GM using four synthesis routes by varying the parameters of activating agent (KOH and ZnCl2), dopant (Nitrogen), and carbonization (450, 600 °C) and activation (450, 800 °C) temperatures. Among the different GM-AC products, the GM carbon, doped with urea and activated by KOH (KACurea), exhibited better morphology, hierarchical pore structure, larger surface area (1356 m2 g-1), and the highest specific capacitance of 139 F g-1 in 2 M NaOH aqueous electrolyte. The miscellaneous collection of datasets based on AC experiments was used for specific capacitance and power prediction using the MLP ML model. Overall, this thesis showed that the EMD could be produced in bulk to be used for hybrid capacitor applications. Particularly, it provided insights about the specie interactions in the electrolyte solution that improved the material performance. This built the platform for further studies on altering the additive concentrations and combinations for developing high-performing EMD materials. This Ph.D. work also highlighted the opportunities to valorize the biomass waste to produce AC with desired characteristics of hierarchical pore structure, larger surface area, etc., to replace the conventional AC electrodes. Finally, the electrochemical performance of the hybrid capacitor fabricated using best performed EMD material (EMD/B-AB30) and biomass-waste derived AC (MS-AC 1100) surpassed the energy density values of the existing supercapacitors, proving its potential development in commercial applications

    In Situ Extraction And Transesterification Of Jatropha Curcas L. Seeds Using Supercritical Fluids For The Synthesis Of Biodiesel

    Get PDF
    Jatropha curcas L. (JCL) is an emerging non-edible oil plant which has a high potential as the feedstock for biodiesel production. In this study, supercritical in situ extraction and transesterification process (SET) developed from process intensification was applied together with methanol for the production of biodiesel from JCL in a high pressure batch reactor. Raw material characterizations were performed on the JCL oil seeds in this study to determine their physical and chemical properties. Pre-treatments of the solid seeds including solid particle size (0.5-2.0 mm), de-shelling and heat treatment at five different temperatures (45°C-105°C) and two different durations (12h and 24h) were also investigated. It was discovered that de-shelling of JCL seeds had highest influence on the product yield, followed by sieving and heat treatment. SET process was conducted in the process temperature range of 240°C to 320°C, process pressure of 4.0 MPa to 24.0 MPa, methanol to solid seeds ratio (SSR) of 2.5 ml/g to 15.0 ml/g, space loading of 90.0 ml/g to 18.0 ml/g, n-hexane to solid seeds ratio of 0 ml/g to 6.0 ml/g, process holding time of 0 min to 35 min and stirring speed of 0 rpm to 500 rpm. Co-solvents which were being employed in the process to reduce the process severity were n-pentane, n-heptane, tetrahydrofuran (THF), toluene, nitrogen gas (N2) and carbon dioxide gas (CO2). Their amounts were varied from 1.0 ml/g to 5.0 ml/g for liquid and 10 bar to 50 bar for gases. It was found that n-pentane and CO2 could further reduce the optimum operating temperature and amount of methanol for SET process due to promoting higher miscibility between reactants

    Methylene Blue Dye Adsorption in Aqueous System using Microcrystalline Cellulose obtained from Sugarcane Bagasse

    Get PDF
    Microcrystalline cellulose (MCC) was prepared from sugarcane bagasse (SCB) after alkali extraction with sodium hydroxide (NaOH). The prepared MCC was treated with methylene blue solution. Batch experiments were performed to investigate the effect of contact time, initial dye concentration, pH and adsorbent dosage on methylene blue adsorption. The result shows that the adsorption of methylene blue dye onto the adsorbent was influenced by adsorbent dose, dye concentration, contact time and pH values. For higher removal of dye from simulated wastewater, adsorbent dose of 0.4g and dye concentration of 200 mg/l gave optimum adsorption with percentage removal (% R) of 87.19. The adsorption capacity of methylene dye increased with increase in contact time. Also, the duration and pH for optimum adsorption were at 120 mins and pH 9 respectively. The experiment data fitted well into Freundlich isotherm. The results of this work revealed that microcrystalline cellulose from sugarcane bagasse is a potential alternative non-conventional adsorbent for treating dye effluent
    corecore